Evaluation of corrosion behaviour on Mn-Cr austenitic steels using 0.1 M HCl solution

Document Type: Research Paper


1 Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.

2 Materials Research School, Nuclear Science and Technology Research Institute, Isfahan, Iran.


One of the attractive low activation steels is the austenitic Mn-Cr steel from the view point of waste disposal because of few long-lived nuclides. In this paper, three types of Mn-Cr austenitic steels were fabricated by vacuum induction furnace. Then plates with 10 mm thickness were fabricated by hot-rolling. The physical metallurgy of these steels was studied by the corrected Schaeffler diagram, X-ray and electron diffraction patterns. The corrected Schaeffler diagram and X-ray diffraction (XRD) results have shown that the matrix of these steels is a single γ-phase structure. Also, the corrosion behaviour in 0.1M HCl solution was evaluated by open-circuit potential, Tafel polarization, and electrochemical impedance spectroscopy (EIS). The results of Tafel polarization experiments show corrosion current density of all three Cr-Mn steels is in the range of 10-4 A cm-2 which indicates their appropriate resistance in this acidic environment. The Nyquist plots showed that polarization resistance from the first to third Cr-Mn steels decreases. This trend is due to increase in corrosion current density which corresponds to Tafel polarization curves.


Main Subjects


  1. M. Kemp, A. van Bennekom, F. P. A. Robinson, “Evaluation of the corrosion and mechanical properties of a range of experimental Cr-Mn stainless steels”, Mater. Sci.Eng.A, 199, 1995, pp. 183–194.
  2. B. R. Nijhawan, in Stainless Steels `87. TheInstituteofMetals,York, 1987, p. 535.
  3. R. A. Lula, in Manganese Stainless Steels. The Manganese Centre,Paris, 1986, p. 1.
  4. S. R. Chen, H. A. Davies, W. M. Rainforth, “Austenite phase formation in rapidly solidified Fe-Cr-Mn-C Steels”, Acta mater. 47, 1999, pp. 4555–4569.
  5. Y. S. Zhang, X. M. Zhu, S. H. Zhong, “Effect of alloying elements on the electrochemical polarization behavior and passive film of Fe–Mn base alloys in various aqueous solutions”, Corros. Sci. 46, 2004, pp. 853–876.
  6. H. Y. Bi, X.X. Jiang, S. Z. Li, “The corrosive wear behavior of Cr–Mn–N series casting stainless steel”, Wear, 225–229, 1999, pp. 1043–1049.
  7. U. R. Lenel, B. R. Knott, “Structure and properties of corrosion and wear resistant Cr-Mn-N steels”, Metall. Trans., 18 A, 1987, pp. 847–855.
  8. Y. Okazaki, K. Miyahara, N. Wade, Y. Hosoi, “Effect of manganese and chromium on microstructure and toughness of Fe-Cr-Mn alloys resulting from solid-solution treatment”, J. Japan. Inst. Metals, 53, 1989, pp. 502–511.
  9. H. Masumoto, K. Suemune, H. Nakajima,S. Shimamoto, “Development of a high-strength high-manganese stainless steel for cryogenic use”, Adv. Cryogenic Engng Mater., 30, 1984, pp. 169–176.
10. P. Schiller, “Review of materials selection for fusion reactors”, J. Nucl. Mater. 206, 1993, pp. 113–120.

11. K. Miyahara, D. S. Bae, T. Kimura, Y. Shimoide, Y. Hosoi, “Strength properties and microstructure of high Mn–Cr austenitic steels as potential high temperature materials”, ISIJ Int. 37, 1996, pp. 878–882.

12. B. Hu, H. Kinoshita, T. Shibayama, H. Takahashi, “Effect of helium on radiation behavior in low activation Fe–Cr–Mn alloys”, Mater. Trans. 43, 2002, pp. 622–626.

13. D. R. Harries, G. J. Butterworth, A. Hishinuma, F. W. Wiffen, “Evaluation of reduced-activation options for fusion materials development”, J. Nucl. Mater. 191–194, 1992, pp. 92–99.

14. A. Kohyama, M. L. Grossbeck, G. Piatti, “The application of austenitic stainless steels in advanced fusion systems: current limitations and future prospects”, J. Nucl. Mater. 191–194, 1992, pp. 37–44.

15. V. K. Shamardin, T. M. Bulanova, V. N. Golovanov, V. S. Neustroyev, A. V. Povstyanko, Z. E. Ostrovsky, “Change in the properties of Fe-Cr-Ni and Fe-Cr-Mn austenitic steels under mixed and fast neutron irradiation”, J. Nucl. Mater.
233–237, 1996, pp. 162–168.

16. Y. S. Lim, J. S. Kim, S. J. Ahn, H. S. Kwon, Y. Katada, The influences of microstructure and nitrogen alloying on pitting corrosion of type 316L and 20 wt.% Mn-substituted type 316L stainless steels, Corros. Sci. 43, 2001, pp. 53–68.

17. A. S. Hamada, L. P. Karjalainen, R. D. K. Misra, J. Talonen, “Contribution of deformation mechanisms to strength and ductility in two Cr–Mn grade austenitic stainless steels”, Mater. Sci.Eng.A, 559, 2013, pp. 336–344.

18. A. I. Z. Farahat, O. Hamed, A. El-Sisi, M. Hawash, “Effect of hot forging and Mn content on austenitic stainless steel containing high carbon”, Mater. Sci.Eng.A, 530, 2011, pp. 98–106.

19. M. Onozuka, T. Saida,S. Hirai, M. Kusuhashi, I. Sato, T. Hatakeyama, “Low-activation Mn–Cr austenitic stainless steel with further reduced content of long-lived radioactive elements”, J. Nucl. Mater. 255, 1998, pp. 128–138.

20. R. L. Klueh, P. J. Maziasz, E. H. Lee, “Manganese as an Austenite Stabilizer in Fe-Cr-Mn-C Steels”, Mater. Sci.Eng.A, 102, 1988, pp. 115–124.

21. M. Foldefiki, H. Ledbetter, P. Uggowitzer, “Magnetic properties of Cr-Mn austenitic stainless steels”, J. Magnetism Magnet. Mater. 110, 1992, pp. 185–196.

22. G. Ruhi, O. P. Modi, I. B. Singh, “Pitting of AISI 304L stainless steel coated with nano structured sol–gel alumina coatings in chloride containing acidic environments”, Corros. Sci. 51, 2009, pp. 3057–3063.

23. R. F. A. Jargelius-Pettersson, B. G. Pound, “Examination of the Role of Molybdenum in Passivation of Stainless Steels Using AC Impedance Spectroscopy”, J. Electrochem. Soc. 145, 1998, pp. 1462–1469.

24. A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, E. Matykina, “Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4”, Corros. Sci. 50, 2008,
pp. 780–794.

25. K. J. Park, H. S. Kwon, “Effects of Mn on the localized corrosion behavior of Fe–18Cr alloysμ, Electrochim. Acta 55, 2010,
pp. 3421–3427.