The Effect of Friction Stir Processing Speed Ratio on the Microstructure and Mechanical Properties of A 430 Ferritic Stainless Steel

Document Type: Research Paper


1 Department of Materials Engineering, Islamic Azad University - Karaj Branch, Karaj, Iran

2 Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran


This study is an attempt to investigate the effect of welding rotational and traverse speed on mechanical and microstructural properties of A 430 stainless steel in order to give an effective processing window to achieve an appropriate microstructure and so mechanical properties. There are a wide range industrial uses for ferritic stainless steel. There from they have some problems like grain coarsening and martensitic transformation during conventional fusion welding, solid state welding methods has found a great interest. A heavy duty NC machine is used for FSW. Water cooled brass chamber is used to prevent the tool from severe wear and damage. In order to study the effect of rotational to welding speed ratio ( ) on microstructure, rotational speeds of 600, 800 rpm and welding speeds of 50, 100, 150, 200 mm/min with a spindle tilt angle of 3° are selected. Results showed that ferrite grain size decreased by increasing welding speed at constant rotational speeds which prove dynamic recrystallization occurrence in the nugget zone. Mechanical tests showed that strength and hardness of weld zone in increased compared to base metal.


  1. ASM Metals Handbook, Vol. 6, “Welding, Brazing, and Soldering”, 2005, USA, ASM International.
  2. R. S. Mishra and Z. Y. Ma, “friction stir welding and processing”, Mate. Sci. and Engineering, R 50, 2005, 1–78.
  3. D. Haris and A. F. Nomerman, “Properties of friction Stir welded joints”, TWI Cambridge U.K member, report 726, 2003.
  4. R. Nandan, T. Debroy and H. Bhadeshia, Recent advances in friction-stir welding process, weldment structure and properties, Mater. Sci., 53, 2008, pp. 980-1023.
  5. T. Kheled, “An outsider looks at friction stir welding”, report ANM, 112-n-0506, 2005.
  6. W. M. Thomas, D. G. Staines, I. M. Nomerris and R. DeFrias, “Friction stir welding tools and developments”, The Welding Institute, report TWI Ltd(UK), 2003.
  7. D. Sorensen and T. W. Nelson, “Friction stir welding of ferrous and nickel alloys”, in ASM handbook, vol., “Welding, Brazing, and Soldering”, 111-121, 2007, ASM international.
  8. D. Peckne and I. M. Bernestain, “Handbook of Stainless Steels”, 1997, Mcgraw-Hill, New York.
  9. B. Leffler, Stainless steels and their properties, Metall. Trans., 31, 2000,
    2181- 2192.
10. H. H. Cho, H. N. Han, S. T. Hong, J. H. Park, Y. J. Kwon, S.H. Kim and R. J. Steel, “Microstructural analysis of friction stir welded ferritic stainless steel”, Mater. Sci. Eng. A, 528, 2000, 2889–2894.

11. H. H. Cho, S. H. Kang, S. H. Kim, K. H. Oh, H. J. Kim, W. S. Chang and H. N. Han, “Microstructural evolution in friction stir welding of high-strength line pipe steel”, Mater. Design, 34, 2012, 258–267.

12. B. W. Ahn, D. H. Choi, D. J. Kim and S. B. Jung, “Microstructures and properties of friction stir welded 409L stainless steel using a Si3N4 tool”, Mater. Sci. Eng. A, 532, 2012, 476– 479.

13. A. K. Lakshminarayanan and V. Balasubramanian, “An assessment of microstructure, hardness, tensile and impact strength of friction stir welded ferritic stainless steel joints”, Mater. Design, 31, 2010, 4592–4609.

14. T. Saeid, A. Abdollah-zadeh, H. Assadi and F. M. Ghaini, “Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel”, Mater. Sci. Eng. A, 496, 2008, 262–268.

15. M. Esmailzadeh, M. Shamanian, A. Kermanpur and T. Saeid, “Microstructure and mechanical properties of friction stir welded lean duplex stainless steel”, Mater. Sci. Eng. A, 561, 2013, 486–491.

16. M. B. Bilgin and C. Meran, “The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels”, Mater. Design, 33, 2012, 376–383.

17. Y. C. Chen , H. Fujii, T. Tsumura, Y. Kitagawa, K. Nakata, K. Ikeuchi, K. Matsubayashi, Y. Michishita, Y. Fujiya and J. Katoh, “Banded structure and its distribution in friction stir processing of 316L austenitic stainless steel”, J. Nuc. Mater., 420, 2012, 497–500.

18. J. Jeon, S. Mironov, Y.S. Sato, H. Kokawa, S.H.C. Park and S. Hirano, “Anisotropy of structural response of single crystal austenitic stainless steel to friction stir welding”, Acta Mater., 61, 2013,

19. A. K. Lakshminarayanan and V. Balasubramanian, “Assessment of fatigue life and crack growth resistance of friction stir welded AISI 409M ferritic stainless steel joints”, Mater. Sci. Eng. A, 539, 2012,

20. M. Jafarzadegan, A. H. Feng, A. Abdollah-zadeh, T. Saeid, J. Shen and H. Assadi, “Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and St37 steel”, Mater. Characterization, 74, 2012, 28-41.

21. Y. Miyanoa, H. Fuji, Y. Sun, Y. Katada, S. Kuroda and O. Kamiya, “Mechanical properties of friction stir butt welds of high nitrogen-containing austenitic stainless steel”, Mater. Sci Eng. A, 528, 2011,

22. M. Jafarzadegan, A. Abdollah-zadeh, A. H. Feng, T. Saeid, J. Shen and H. Assadi, “Microstructure and Mechanical Properties of a Dissimilar Friction Stir Weld between Austenitic Stainless Steel and Low Carbon Steel”, J. Mater. Sci. Technol., 29, (4),

23. Y. S. Sato, T. W. Nelson, C. J. Sterling, R. J. Steel and C. O. Pettersson, “Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel”, Mater. Sci Eng. A, 397, 2005,

24. T. Saeid, A. Abdollah-zadeha, T. Shibayanagi, K. Ikeuchi and H. Assadi, “On the formation of grain structure during friction stir welding of duplex stainless steel”, Mater. Sci Eng. A, 527, 2010,

25. S. H. C. Park, Y. S. Sato, H. Kokawa , K. Okamoto, S. Hirano and M. Inagaki, “Rapid formation of the sigma phase in 304 stainless steel during friction stir welding”, Scripta Mater., 49, 2003, 1175–1180.

26. H. Kokawa, S. H. C. Park, Y. S. Sato, K. Okamoto, S. Hiranome and M. Inagaki, “Microstrictres in friction stir welded 304 austenitic stainless steel”, Welding in the World, 49, 2005, 34-40.

27. ASM Handbook, Vol. 9, “Metallography and Microstrictures”, 1992, USA, ASM International.

28. C. Hamilton, S. Dymek and M. Blicharski, “A model of material flow friction stir welding, Materials Charactrization”, 59, 2008, 1206-1214.

29. J. M. Pardal, S. S. M. Tavares, M. C. Fonsec, J. A. de Souza, R. R. A. Côrte and H. F. G. de Abreu, “Influence of the grain size on deleterious phase precipitation in super duplex stainless steel UNS S32750”, Mater. Characterization, 60, (3), 2009,

30. E. J. Morley and A. Sandvik, “Heat-affected zone toughness of fsw welded 12%Cr martensitic-ferritic steels”, Welding J., 2003, 431-440.

31. S. Hwan, C. Park, T. Kumagai, Y. S. Sato and H. Kokawa, “Microstructure and mechanical properties of friction stir welded 430 stainless steel”, Proc. High Perform. Maer. Symp. on Adv. Welding of Structural Mater. at Seoul, Korea, 2005, 19-24.

32. J. J. Zaayman:“Improvements of the mechanical properies of the stir zone in welds of 14 to 17 percent chromium steels”, PhD Thesis, University of Pretoria, 1994.