Magnetic and Structural Characteristics of Fe2O3 Nanostructure Synthesized in the Presence of Sour Cherry Juice

Document Type: Research Paper


Department of Chemistry, Faculty of Sciences, Najafabad Branch, Islamic Azad University, Najafabad, Esfahan, Iran.


The nanostructures of Fe2O3 have been synthesized applying sour cherry juice and iron chloride as a low-cost and eco-friendly method at ambient conditions. Sour cherry juice has been used as a surfactant and the kind of surfactant had an important effect on the size and morphology of the products. The effect of sour cherry juice concentration and calcination temperature on the morphologies of Fe2O3 nanostructures has been investigated. The prepared nanoparticles were subjected to X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), and vibrating sample magnetometer (VSM) system. The powder X-ray diffraction analysis confirmed that Fe2O3 nanostructures are in Rhombohedral and Cubic phases. The average crystalline size estimated by the Williamson-hall method was about 13-32 nm for all samples. Various morphologies were also obtained by changing the amount of sour cherry juice. The saturation magnetization increased with the growth of crystals.


Main Subjects

[1] K.J. Klabunde, R.M. Richards,  Nanoscale Materials in Chemistry, 2nd ed., John Wiley & Sons, New Jersey, 2009.

[2] A. Quarta, R.D. Corato, L. Manna, S. Argentiere, R. Cingolani, G. Barbarella, T. Pellegrino, “Multifunctional nanostructures based on inorganic nanoparticles and oligothiophenes and their exploitation for cellular studies”, J. Am. Chem. Soc., Vol. 130, pp. 10545-10555.

[3] P. Sun, H. Zhang, C. Liu, J. Fang, M. Wang, J. Chen, J. Zhang, C. Mao, S. Xu, S. Langmuir, “Preparation and characterization of Fe3O4/CdTe magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells”, Langmuir, Vol. 26, 2009, pp. 1278-1284.

[4] W.C. Law, K.T. Yong, I. Roy, G.X. Xu, H. Ding, Z.H. Bergey, P.N.J. Prasad, “Optically and magnetically doped organically modified silica nanoparticles as efficient magnetically guided biomarkers for two-photon imaging of live cancer cells”, J. Phys. Chem. C, Vol. 112,2008, pp. 7972-7977.

[5] S.A. Corr, Y.P. Rakovich, Y.K. Gun’ko, “Multifunctional magnetic-fluorescent nanocomposites for biomedical applications”, Nanoscale Res. Lett., Vol. 3, 2008, pp. 87-104.

[6] R. He, X. You, J. Shao, F. Gao, B. Pan, D. Cui, “Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation”, Nanotechnol., Vol. 18, 2007, pp. 315601-315608.

[7] M. Jr. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels”, J. Sci., Vol. 281, 1998, pp. 2013-2016.

[8] N. Kohler, C. Sun, J. Wang, M. Zhang, “Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells”, Langmuir, Vol. 21, 2005, pp. 8858-8864.

[9] M.R. Mohammad Shafiee, M. Ghashang, A. Fazlinia, “Preparation of 1,4-dihydropyridine derivatives using perchloric acid adsorbed on magnetic Fe3O4 nanoparticles coated with silica”, Curr. Nanosci., Vol. 9, 2013, pp. 197-201.

[10] M. Dehbashi, M. Aliahmad, M.R. Mohammad Shafiee, M. Ghashang, “Nickel doped SnO2 nanoparticles: Preparation and evaluation of their catalytic activity in the synthesis of 1-amidoalkyl-2-naphtholes”, Synth. React. Inorg. Met. Org. Chem., Vol. 43, 2013, pp. 1301-1306.

[11] M. Ghashang, “Preparation and application of barium sulfate nanoparticles in the synthesis of 2,4,5-triaryl and N-aryl(alkyl)-2,4,5-triaryl imidazoles”, Curr. Org. Synth., Vol. 9, 2012, pp. 727-732.

[12] K.C. Bhainsa, S.F.D. Sauza, “Extracellular biosynthesis of silver nanoparticles using the fungus aspergillus fumigates”, Coll. Surf. B: Biointerfaces, Vol. 47, 2006, p. 160.

[13] I.Willner, B. Basnar, B. Willner, “Nanoparticle–enzyme hybrid systems for nanobiotechnology”, J. FEBS, Vol. 274, 2007, pp. 302-309.

[14] N. Saifuddin, Fig.C.W. Wong, A.A.N.E. Yasumira, “Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation”, J. Chem., Vol. 6, 2009, p. 61.

[15] J.L. Gardea-Torresdey, J.G. Parsons, E. Gomez, J. Peralta-Videa, H.E. Troiani, P. Santiagol, M. Jose Yacaman, “Formation and growth of Au nanoparticles inside live alfalfa plants”, Nano Lett., Vol. 2, 2002, pp. 397-401.

[16] J.L. Gardea-Torresdey, J.G. Parsons, E. Gomez, J. Peralta-Videa, H.E. Troiani

M. Jose-Yacaman, “Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles”, Langumir, Vol. 12, 2003, pp. 1357-1361.

[17] J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, “Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf”, Nanobiotechnol., Vol. 18, 2007, 18, 105104.

[18] S.S. Shankar,A. Rai, A. Ahmad, M. Sastry, “Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth”, J. Colloid Interface Sci., Vol. 275, 2004, pp. 496-502.

[19] B. Ankamwar, D. Chinmay, A. Absar, S. Murali, “Biosynthesis of gold and silver nanoparticles using emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution”, J. Nanosci. Nanotechnol., Vol. 10, 2005, pp. 1665-1671.

[20] S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, “Biological synthesis of triangular gold nanoprisms”, Nat. Matter., Vol. 3, 2004, pp. 482-488.

[21] N.D. Kandpal, N. Sah, R. loshali, R.; Joshi, J. Prasad, “ Co-precipation method of synthesis and characterization of iron oxid nanoparticles”, J. Sci. Ind. Res., Vol. 73, 2014, pp. 87-90.

[22] R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, VCH Publisher, New York, 1996.

[23] S. Bagheri, K.G. Chandrappa, A.H. Sharifah Bee, “Generation of Hematite Nanoparticles via Sol-Gel Method”, Res. J. Chem. Sci., Vol. 3, 2013, pp. 62-68.

[24] J. Grabis, G. Heidenmane, D. Rasmane, “Preparation of Fe3O4 and γ-Fe2O3 Nanoparticles by Liquid and Gas Phase Processes”, ‎J. Mater. Sci., Vol. 14, 2008, pp. 292-295.

[25] E. Darezereshki, F. Bakhtiari, M. Alizadeh, A. Behradvakylabad, M. Ranjbar, “Direct thermal decomposition synthesis and characterization of hematite (α-Fe2O3) nanoparticles”, Mater. Sci. Semicond. Process, Vol. 15, 2012, pp. 91–97.

[26] P.P. Sarangi, B. Naik, N.N. Ghosh, “Low temperature synthesis of single-phase α-Fe2O3 nano-powders by using simple but novel chemical methods”,  Powder Technol., Vol. 192, 2008, pp. 245–249.

[27] M. Alagiri, A.H. Sharifah Bee, “Green synthesis of α-Fe2O3 nanoparticles for photocatalitic application”, J. Mater. Sci. Mater. Electron, Vol. 25, 2014, pp. 3572-3577.

[28] B. Ahmmad, K. Leonard, Md. Shariful Islam, J. Kurawaki, M. Muruganandham, T. Ohkubo, Y.  Kuroda, “Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity”, Adv.Powder Technol., Vol. 24, 2013, pp. 160–167.

[29] A. Khorsand Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, “X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods”, Solid State Sci., Vol. 13, 2011, pp. 251-256.

[30] F.Tavakoli, M. Salavati-Niasari, D. Ghanbari, K. Saberyan, S.M. Hosseinpour-Mashkani, “Application of glucose as a green capping agent and reductant to fabricate CuI micro/nanostructures”,  J. Mater. Res. Bull., Vol. 49, 2014, pp. 14-20.

[31] L. Kaume, L.R. Howard, L. Devareddy, “The Blackberry Fruit: A Review on Its Composition and Chemistry, Metabolism and Bioavailability, and Health Benefits”, J. Agric. Food Chem., Vol. 60, 2012, pp. 5716-5727.

 [32]     B. D. Cullity, C. D. Grahham, Introduction to magnetic materials, Second Edition John Wiley & Sons, New Jersey, 2009.